THERMAL INVESTIGATIONS ON YELLOW WOOLS

E. Wojciechowska, M. Eder and A. Wlochowicz

TEXTILE INSTITUTE, TECHNICAL UNIVERSITY OF LODZ, BRANCH IN BIELSKO-BIALA, FINDERA 32, POLAND

Thermal investigations (TG, DTG) were carried out on the wool of Polish Mountain, Polish Lowland, Polish Merino and Polish Long-fleeced sheep in order to find dependences between the yellowing of the wool fibres and their structure. The thermal investigations were made on a single lock, taking into account the upper (yellow) and the lower (white) parts of the staple.

A relationship has been sought between the yellowing of wool fibres and their supermolecular structure in an attempt to characterize the fibres with regard to differences in discoloration between the upper (yellow) part and the lower (white) part of the same lock. The changes in structure were assessed by using thermal analysis.

The investigations were carried out on a sample of a lock of hairs emerging from the same hole in the sheep skin, separately for the fibres form the upper part (always yellow) and the lower part (white) of the same staple.

Experimental

The material under investigation was taken from the fleece of Polish Mountain, Polish Lowland, Polish Merino and Polish Long-fleeced sheep in experimental breeding stations.

The samples were taken within one lock from the back of the sheep during the same clip.

The samples were cleaned and divided into the upper (yellow) and the lower (white) part of the staples and then extracted with methylene chloride.

The thermal investigations were carried out with a Q-1500 D derivatograph in an atmosphere of static air at a linear heating rate of 10 deg/min.

Mass loss was recorded as a function of temperature.

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Results and discussion

The thermogravimetric curves (Fig. 1) show four DTG peaks, corresponding with the temperature T_1 , T_2 , T_3 and T_4 . The DTG peak occurring at 68-77° (T_1) corresponds with the desorption of water physically bound to the fibre. The intensivity of this effect depends mainly on the sorption ability and humidity of the wool fibres.

Fig. 1 TG and DTG curves of wool fibres

The DTG peak T_2 corresponds with transitions resulting from heating of the wool fibres between 160° and 220°. In this temperature range the following processes may occur [1-4]. In the amorphous and crystallographic regions of the wool fibres, supercontraction, disordering of the α -helical region of keratin, chemical and reactions between the -NH₂ and -COOH groups take place, which cause crosslinking of the keratin amorphous region through imide bonds with the release of volatiles (H₂O, NH₃).

At about 240°, changes take place which lead to the decomposition of disulphide bonds, principally in the matrix rich in these bonds [5]. Increase of the temperature above 250° lead to degradation of the fibrillar region [6]. Tables 1-4 list results of the thermal investigation which correspond with these temperatures (T_3 and T_4), and with the temperature of loss of half the mass of the fibre (T_5), i.e. the temperature at which half the dry fibre mass is destroyed.

Lot % Lower Upper part, part, part, part, white ycllow A 9.2 10.0 B 10.9 13.4 C 11.6 13.8 D 11.0 12.6 F 10.8 11.7					-	4	Ъ, КJ	/mol	I	5.
Lower Upper part, white Upper part, par	0	C	Staf	ge I	0	C)	Stag	e II	0	с U
part, part, part, A 9.2 10.0 B 10.9 13.4 C 11.6 13.8 D 11.0 12.6 F 10.8 11.7 F 10.8 11.7	r Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
white yellow A 9.2 10.0 B 10.9 13.4 C 11.6 13.8 D 11.6 13.8 F 10.8 11.7 F 10.8 11.7	part,	part,	part,	part,	part,	part,	part,	part,	part,	part,
A 9.2 10.0 B 10.9 13.4 C 11.6 13.8 D 11.0 12.6 E 11.3 12.5 F 10.8 11.7	v white	yellow	white	yellow	white	yellow	white	yellow	white	yellow
B 10.9 13.4 C 11.6 13.8 D 11.0 12.6 E 11.3 12.5 F 10.8 11.7 G 13.3 13.4	260	256	. 65.8	58.1	492	468	98.9	94.2	348	322
C 11.6 13.8 D 11.0 12.6 F 10.8 11.7 F 10.8 11.7	260	256	66.4	56.2	496	508	101.3	102.8	340	320
D 11.0 12.6 E 11.3 12.5 F 10.8 11.7	264	252	62.3	61.0	524	536	111.4	201.2	360	296
E 11.3 12.5 F 10.8 11.7 C 12.7 12.5	256	252	65.0	58.3	520	492	109.2	0.06	376	320
F 10.8 11.7	260	252	67.7	59.4	500	500	9.96	98.1	352	328
127 125	256	260	69.1	62.3	528	472	113.5	95.5	352	348
C.CI /.CI D	256	252	63.5	60.2	460	464	90.8	96.5	316	316
H 12.4 11.9	260	256	68.6	60.4	472	460	94.7	89.6	332	340
J 11.7 14.0	252	256	64.6	62.5	489	510	97.0	105.1	340	300
K 11.8 12.0	252	252	60.3	55.8	464	512	96.6	109.8	320	308
L 14.7 12.7	258	260	62.5	59.1	452	456	88.1	93.5	324	320

Table 1 Thermal transitions in wool fibres from fleece of Polish Mountain sheep

E - activation energy; T3, T4 - DTG peak temperatures, °C; T5 - temperature of loss of half mass of the fibre, °C

WOJCIECHOWSKA et al.: THERMAL INVESTIGATIONS

2271

50	Upper	yellow	308	338	352	308	340	340	336	342	342	348
L o	Lower	white	322.	350	358	342	344	345	348	353	353	356
/mol e II	Upper	yellow	101.4	98.3	96.9	102.5	95.5	100.2	96.1	105.2	105.7	108.9
E, kJ, Stag	Lower	white	99.7	103.1	102.7	100.8	94.7	105.8	98.9	102.4	107.0	102.3
φ ()	Upper	yellow	500	480	573	498	474	582	563	503	586	584
Ľ.	Lower	white	492	506	582	494	460	594	570	490	588	582
/mol ge I	Upper	yellow	60.3	62.1	57.2	63.0	65.2	55.2	56.2	62.5	57.5	55.6
E, kJ Staj	Lower	white	65.4	65.3	59.7	65.1	68.3	58.6	59.8	66.5	62.0	58.9
- D	Upper	yellow	256	258	243	260	252	238	241	252	256	241
T3	Lower	white	260	262	245	260	256	240	248	260	260	244
sorption, 6	Upper nart	yellow	12.1	11.5	10.2	13.4	12.1	10.9	11.5	12.6	11.4	10.7
Water des	Lower	white	10.9	10.3	9.9	12.2	11.2	11.3	11.1	10.7	10.9	9.6
Lot			ũ	ŗ	Û	H'	ŗ	K'	ù	'n,	Ļ	¢

E - activation energy; T_3 , T_4 - DTG peak temperatures, ^oC; T_5 - temperature of loss of half mass of the fibre, ^oC

Table 2 Thermal transitions in wool fibres from fleece of Polish Lowland sheep

J. Thermal Anal., 36, 1990

Ts, °C	Upper part, vellow	350	348	344	344	348	352	348	348
	Lower part, white	356	364	352	353	352	368	360	356
/mol e II	Upper part, vellow	98.9	99.8	105.7	101.9	97.4	101.3	102.8	108.8
E, kJ Stag	Lower part, white	96.7	97.4	100.6	102.5	99.1	105.4	106.0	110.1
÷Ο	Upper part, vellow	581	532	591	586	570	592	592	592
.T 90	Lower part, white	560	520	577	586	572	594	596	604
/mol ge I	Upper part, vellow	54.1	59.0	55.0	57.3	55.3	56.0	56.4	53.3
E, kJ Stag	Lower part, white	56.4	63.2	58.9	61.0	60.2	58.7	60.2	57.9
- 5)	Upper part, vellow	231	248	240	241	241	241	240	240
T3 °(Lower part, white	234	256	244	248	248	247	248	242
esorptio	Upper part, yellow	12.9	10.8	10.4	10.8	11.1	10.7	10.2	10.4
Water di	Lower part, white	11.6	9.1	9.4	10.3	11.2	10.5	8.8	10.3
Lot		ů	н"	J"	M"	N"	г",	s"	T.,

Merino sheep
fleece of Polish
I fibres from
sitions in woo
Chermal tran:
Table 3]

E - activation energy; T_3 , T_4 -DTG peak temperatures, ^oC; T_5 - temperature of loss of half mass of the fibre, ^oC

ater des	sorption,	T_3		E, kJ	/mol	T	4,	E, kJ	[/mol	L	5,
.0) ₀	0	Stal	ge I	o ⁻	c	Stap	ge II	0	c
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
	part,	part,	part,	part,	part,	part,	part,	part,	part,	part,	part,
	yellow	white	yellow	white	yellow	white	yellow	white	yellow	white	yellow
	12.8	254	252	65.2	62.6	562	564	94.7	96.3	341	332
	13.7	244	242	61.1	58.7	572	556	100.1	93.7	332	316
	12.7	242	240	59.2	57.0	576	568	100.3	97.4	344	336
	12.7	252	250	64.8	60.4	588	562	108.0	96.7	365	336
	14.2	242	240	58.7	56.1	572	568	101.8	98.6	328	332
	14.0	248	236	66.3	60.2	576	561	103.1	94.4	336	332
	11.0	248	240	64.0	61.3	576	572	104.2	98.3	352	348
	14.2	252	248	67.0	62.6	584	580	107.9	102.6	332	326
	15.0	252	248	64.4	61.1	572	580	100.7	106.1	328	320
	14.1	248	246	63.5	59.1	560	556	94.3	92.0	324	321

E - activation energy; T_3 , T_4 - DTG peak temperateres, ^oC; T_5 - temperature of loss of half mass of the fibre, ^oC

Table 4 Thermal transitions in wool fibres from fleece of Polish Long-fleeced sheep

J. Thermal Anal., 36, 1990

Computer programs according to the Freeman-Carrol methods [7] were used to calculate the overall kinetic parameters, i.e. the activation energy and order of reaction.

The thermal decomposition of wool fibres is a two-stage process. The first stage involves the transitions occurring in the temperature range $160-400^{\circ}$ (peak temperatures T_2 and T_3 correspond to these transitions).

The second stage involves the rapid reactions of destruction in the temperature range $400-600^{\circ}$ (temperature T₄ corresponds to these transitions).

In comparison with the lower part of the staple, wool fibres from the upper part of the staple are characterized by lower temperatures of destruction (T_2, T_4) , which indicates the activation of S-S bonds.

The activation energies for fibres from the upper part of the staple testify to the lower energy necessary for cleavage of the chemical bonds.

The lowering of the temperature of half-destruction (T_5) is caused by the reduction in thermal resistance as a result of the looseness and damage to the structure of the fibres from the upper (yellow) part of the staple. Moreover, the results of thermogravimetric measurements showed a facilitated water desorption from the upper part of the staple as compared with the lower part of the same staple.

The upper (yellow) part of the staple is not too well preserved by lipids and is subjected to a more intensive penetration of alkali, sweat and an oxidizing environment.

Oxidation of the fibre interior is possible and leads to looseness of the structure of α -keratin as a result of cleavage of ester, thioester and disulphide bonds. Thermal investigation allows diagnostic possibilities as concerns the essential processes occurring in the yellow fibres.

References

1 R. S. Schwenker and J. H. Dussenburg, Text. Res. J., 30 (1960) 800.

2 J. S. Crighton, W. M. Findon and F. Happey, Appl. Polym. Symp., 18 (1971) 847.

3 J. S. Crighton and W. M. Findon, J. Thermal Anal., 11 (1977) 305.

4 Hiroshi Sakabe, Hiraku Ito, Takeaki Miyamoto and Hiroshi Inagaki, Text. Res. J., 57 (1987) 66.

5 M. Spei and R. Holzem, Melliand Textilber., 70 (1989) 371.

6 J. S. Crighton - 8th International Wool Research Textile Conference, Christchurch, N. Z. 1990.

7 E. S. Freeman and B. Carrol, J. Phys. Chem., 62 (1958) 394.

Zusammenfassung — Mittels Thermoanalyse (TG, DTG) wurden Untersuchungen an Fellen von Polnischen Berg-, Flachland-, Merino- und Langfellschafen durchgeführt, um einen Zusammenhang zwischen der Gelbfärbung der Wollfasern und ihrer Struktur festzustellen. Die thermischen Untersuchungen wurden unter Berücksichtigung der oberen (gelben) und unteren (weißen) Rohwollteile an einzelnen Faserbüscheln durchgeführt.